
An Evolutionary Approach to Data Valuation
Natalia Khuri, Sapan Bhandari, Esteban Murillo Burford, Nathan P. Whitener and Konghao Zhao

Wake Forest University
Winston-Salem, North Carolina, USA

natalia.khuri@wfu.edu

ABSTRACT
Data valuation in machine learning comprises computational meth-
ods for the estimation of the importance of individual training
instances. It has been used to remove noise, uncover biases, and
improve the accuracy of trained models. Current data valuation
techniques do not scale up for large datasets and do not work for
regression tasks, where the objective is to predict a numerical out-
come rather than a small number of nominal class labels. In this
work, an evolutionary approach for qualitative and quantitative
data valuation, is presented. The proposed approach is tested on
regression and classification benchmarks, and on several bioinfor-
matics and health informatics datasets. In addition, models trained
with most valuable subsets of data are validated on independently
acquired tests, demonstrating the generalizability as well as the
practical utility of the proposed approach.
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1 INTRODUCTION
Supervised and unsupervised machine learning (ML) are routinely
used in bioinformatics and health informatics. There are three
required components for building a successful ML system, namely,
a database of prior knowledge, a robust learning process, and an
effective inference function [20]. While the vast majority of past
research focused on improvements to the learning processes, issues
related to data quality are often cited among the reasons for the
lagging real-world performance of ML systems [13, 37].
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Some of the quality issues may be due to the selection, capture, la-
beling or co-occurrence biases. Because, an automated detection of
biases and their types is challenging, a common mitigation strategy
is to collect larger datasets, engineer better features from existing
data, or integrate data from multiple samples, experiments and
measurements.

Unfortunately, an increase in data must be substantial due to the
logarithmic dependency between the size of the training data and
model’s performance [37]. In addition, new data may contain the
same biases as the original datasets, thus, bringing no additional
value to the learning process. Sophisticated feature engineering
relies on expert knowledge and manual labor, and can exacerbate
the “curse of the dimensionality” problem, often encountered in
bioinformatics and health informatics [5]. Data integration is a
grand computational challenge on its own, in which additional data
biases can arise due to batch effects [28]. Lastly, training with mas-
sive datasets incurs significant burdens on computational resources
and on energy usage [35].

On the other hand, there is a growing evidence that training
with smaller datasets may be as effective as training with full-
sized datasets [6, 17, 22–24, 36]. The selection of the smaller data
subsets that are valuable for training of an accurate model can
be done automatically. In data valuation, for example, computa-
tional methods are used to estimate the importance of each training
instance. Low-valued instances can be filtered out to find repre-
sentative data, remove noise, reduce biases and improve real-word
performance. These methods include, for example, leave-one-out
validation (LOO) [33], influence functions [25] and Shapley data
values [17].

The utility of data valuation in bioinformatics and health in-
formatics remains limited due to several shortcomings of existing
methods. First, computational costs are high, in particular when
precise estimates are computed, such as in Shapley data valuation,
for example. Second, existing techniques work for classification
tasks only, where the outcomes are discrete. While classification
tasks are important, many practical ML systems must be also able
to predict numerical outcomes in regression tasks. Third, because
data valuation produces a ranked list of the estimated values, the
decision about the best threshold between high and low values
must be made by the user. This can lead to inconsistencies and
new biases. Finally, it has been noted that the valuation process is
dependent on the choice of the learning algorithm and the choice
of the performance metric. This means that the costly process of
data valuation must be repeated for the different combinations of
learning algorithms and metrics.

In this work, we address these shortcomings and introduce an
evolutionary approach for data valuation, which is suitable for
regression and classification tasks with grouped and ungrouped
data. Starting with a random subset of the data, we use a Genetic
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Algorithm (GA) to iteratively improve the solution by applying
genetic operators. The search for the best subset is guided by the
fitness function that evaluates the goodness-of-fit of the trained
model. Independently repeated GA runs produce an ensemble of
solutions, which can be either analyzed individually or used to com-
pute quantitative estimates of the values of the training instances.
As the result, we made three main contributions.

First, we designed and implemented an evolutionary approach to
automatically select the most valuable data subsets for regression or
classification tasks. Our proposed approach can select subsets from
as few as eight and as many as thousands of training instances. In
addition to selecting most valuable instances, the proposed method
can successfully select most valuable groups of data.

Second, we systematically tested our approach on standard re-
gression and classification benchmarks, on real-world datasets with
independent tests, and on synthetic and experimental large, high-
dimensional transcriptomics data. In all use-cases, we demonstrated
that subset-based training led to models that performed on par or
better than models trained with the original datasets.

Third, we showed that by computing an ensemble of evolutionary
subsets, data values of individual training instances can be derived
and used to interpret the latent patterns in the training data or to
explain model’s decisions.

The remainder of this work is organized as follows. In Section 2,
prior research is reviewed. We describe our evolutionary approach
and datasets in Section 3. The results of computational experiments
are presented and analyzed in Section 4. Finally, we summarize our
findings and propose future extensions of this work in Section 5.

2 PRIOR AND RELEVANT WORK
Two groups of computational methods are relevant to our work,
namely, coreset selection and data valuation.

In computational geometry, a coreset is defined as a minimal
set of points that approximates the shape of a larger set of points.
In ML, a coreset is a subset of the original data, which guarantees
that models trained on them will be a good fit for the original
dataset [32]. Many of the early coreset discovery methods used
techniques for dimensionality reduction, where the goal is to project
a high-dimensional dataset onto a low-dimensional space [15, 31].

Recognizing that models trained with a coreset should also gen-
eralize to unseen data, subsequent methods redefined coresets as
the smallest subsets of the original datasets that are used to train
predictive models [4, 8, 12]. In the work closest to ours, a multi-
objective evolutionary optimization algorithm has been proposed,
which finds a Pareto front of possible coresets [4]. These coresets
represent the best trade-offs between the coreset sizes and the clas-
sification errors. On four well-known benchmarks ranging in size
from 150 to 400 instances, the algorithm outperformed traditional
subset selection methods. The evaluation was performed using a
random split of the data into training (66%) and test (33%) sets. In
all benchmarks, reported accuracy was around 90%, significantly
higher than the accuracy of the alternative methods.

In addition to data summarization, coresets can provide qualita-
tive insights about the values of the training instances. Namely, the
discarded instances are of low value, while the selected instances

are highly valuable to the learning process. One of the main lim-
itations of existing coreset selection methods is that there is no
ranking of the importance of the training instances.

This limitation is addressed by the methods for data valuation.
The main idea of data valuation is to assign a numerical score to
each training instance in the original dataset, based on the esti-
mated contribution of that instance to the overall performance of
the trained model. Once estimated, low-valued training instances
may be removed without negative consequences to model’s pre-
dictive performance. Conversely, when high-valued instances are
removed, model’s performance decreases. Methods for quantitative
data valuation include LOO validation, influence functions, Shapley
data values and reinforcement learning.

In LOO validation, for example, a classifier is repeatedly trained
using all instances except for one [33]. The difference in the per-
formance of a model trained with all data of size N , and a model
trained with data of size N − 1, serves as a proxy for the value of
the withheld sample.

Influence functions compute how the parameters of a model
change when the weight of a single training instance is increased
by a very small amount, thus, identifying training instances that
are most valuable for the predictor [25]. While the original statis-
tical influence functions do not scale up to real-world data, their
computation can be somewhat improved using the second-order
optimization techniques.

Data Shapley and its derivatives are inspired by the problem
of the fair division of profit in collaborative game theory. By rep-
resenting the learning process as a collaborative game and the
accuracy of predictions as a profit to be divided fairly among all
training instances, Shapley values can be computed. For a single
training instance, its marginal contribution to all possible subsets
of training data must be computed, thus, making this problem in-
tractable. Therefore, data valuation methods use heuristics, such as
the Monte Carlo simulation, gradient-based estimation and Locality
Sensitive Hashing [9, 17, 19, 30]. Among the most recent techniques
for computing data values is the reinforcement learning approach,
which uses, as the reinforcement signal, the profit that is obtained
on a small validation set [40]. Once low-valued training instances
have been identified, they may be removed from the training data
without a significant loss in model’s performance. The decision
about which threshold to use for filtering of the training data, must
be made by the user, however.

Data valuation techniques have been successful in noise detec-
tion [17, 25], improved classification of X-ray images [36], automatic
selection of subjects from the Alzheimer’s disease database [6],
aggregation of sensor data [22] and virtual drug screening [23].
However, they remain impractical for real-world applications due
to their computational complexity, dependency on user-defined
thresholds, and a lack of support for regression tasks.

Here, we propose a different approach that can automatically
detect most valuable training instances and estimate the quantita-
tive value of each instance in the original dataset. In what follows,
we describe the proposed evolutionary approach to data valuation
with a focus on applications in bioinformatics and health infor-
matics. Moreover, the proposed approach is applicable to different
domains and we rigorously test it with diverse and well-established
ML benchmarks.
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3 METHODS AND DATA
3.1 Proposed Data Valuation Approach
Given a dataset of size N , the objective is to find v = v1, . . . ,vN ,
such that each vi estimates the value of the corresponding datum i .

We implement a GA to solve this problem. Specifically, we begin
by initializingv with zeros. Next, we generate the initial population
of data subsets and evolve a GA to find the best subset comprising
S most valuable instances of N . Once GA converges or reaches its
predefined maximum number of iterations, we increment vi by 1,
for each instance i that is found in S . We repeat the GA k times
and divide each vi by k . Thus, if a training instance was not chosen
in any of the k runs, its value will be 0. On the other hand, if an
instance participated in every final solution, its vi value will be 1.
In this work, we set k to be 100.

Next, we describe the GA and its operators.

3.2 Genetic Algorithm
GAs are inspired by the process of natural selection in evolution,
where the fittest individuals produce offspring of the next genera-
tion [18]. They are used as heuristics for solving the optimization
problems. The design of a GA involves choosing an encoding, a
fitness function and genetic operators.

In this work, each chromosome is encoded as a binary vector of
size N , the number of training samples. The elements of each vector
are drawn from [0,1] with uniform probability. Thus, 1 in position
i means that the ith instance is included in the solution, and 0 in
position i means that the ith instance is excluded, respectively.

We begin by creating a population pool of P chromosomes and
evolve the GA until convergence or for a predefined number of
iterations. At each iteration, we perform the selection process. First,
we transfer 1% of the best solutions to the next generation. Next, p
chromosomes are randomly drawn from the population pool. Their
fitness is computed and normalized, such that the resulting sum of
all fitness values is equal to 1. Pairs of chromosomes are selected
from p, for recombination. To pick pairs of chromosomes, we use a
roulette-wheel selection, where the probability of selection is in-
versely proportional to the fitness of a chromosome. We repeatedly
select pairs of chromosomes, until a new population of size P is
generated.

The purpose of the recombination is to explore the solution
space of the problem. In this work, we perform the recombination
by using a crossover operator, which swaps portions of the parent
solutions to produce the offspring. In addition, we use a mutation
operator to diversify the chromosomes from one generation to the
next, by flipping a randomly selected position in a chromosome,
with a probability of 0.01.

The fitness function depends on the predictive task, namely re-
gression or classification. In both tasks, the fitness of a chromosome
measures how well a model trained on S instances fits these same
instances (self-validation). In classification tasks, we use the multi-
class Cohen’s Kappa metric, and in regression tasks, we use the
R-squared metric.

Cohen’s Kappa (κ) measures the observed accuracy compared
to the expected accuracy, which can be computed for K classes as
follows.

κ =
c × s −

∑K
k pk × tk

s2 −
∑K
k pk × tk

(1)

Here, c is the total number of correctly predicted instances, s
is the total number of instances, pk is the number of times that
class k was predicted, and tk is the number of times that class k
truly occurs. Kappa scores range from [-1, 1], and positive values
indicate that the actual performance is greater than expected. A
Kappa score equal to 0 means that model’s performance is similar
to a random classification, and a negative Kappa value represents
performance worse than what would be expected by chance.

We use the ML definition of the R-squared metric (R2), which is
computed as follows.

R2 = 1 −
∑

|y − ŷ |2∑
|y − ȳ |2

(2)

Here, R2 = 0 implies that the regression model always predicts
the expected value for the dependent variable, ŷ. Notably, R2 can be
negative, implying that model’s performance is worse than random.

Because Kappa and R2 cannot be computed for fewer than two
samples, we automatically set the fitness score to −1 when the size
of S is 2. Also, GA minimizes the fitness function and, therefore,
we multiply the computed fitness values by −1.

3.3 Datasets
We use multiple datasets to test our evolutionary approach, in-
cluding standard ML benchmarks, datasets used in prior works,
synthetic data and real-world datasets, retrieved from public repos-
itories. The diversity and complexity of these datasets allows us to
rigorously test our proposed approach in different domains, includ-
ing bioinformatics and health informatics.

Standard machine learning benchmarks. Twenty three regres-
sion benchmarks and twenty four classification benchmarks were
downloaded from the KEEL repository [3]. We downloaded all
benchmarks with real-valued attributes and no missing values. All
benchmarks are pre-partitioned into five-folds, and the outcome
attribute is identified by the output field in the file header. The
number of attributes in regression benchmarks ranges from 2 to 31,
and the number of instances ranges from 43 to 40,768. Similar crite-
ria were applied to download the classification benchmarks. The
number of attributes in classification benchmarks ranges between
2 and 90, the number of output classes is between 2 and 15, and the
number of instances is between 106 and 19,020.

Drug datasets. The second dataset comprises results of high-
throughput screening data. Drug libraries were tested in in vitro
inhibition assays against three human liver transporters. These
datasets were selected because they had been used in prior work on
data valuation [23]. Each dataset comprises two different screens
against one of the transporters [2, 10, 14, 21]. OCT1 training data
has 1,718 instances and 38 attributes, and test data has 188 instances
and 38 attributes. Both, OATP1B1 and OATP1B3, have 224 training
instances and 1,770 test instances, respectively, and the numbers of
attributes in OATP1B1 and OATP1B3 datasets are 27 and 31, respec-
tively. The regression task is to predict drug’s activity, measured as
percent inhibition.
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Cycling dataset. The third dataset comprises 1,936 sensor mea-
surements of fitness workouts. These data are grouped by athlete.
The measurements have been collected by six different cyclists, four
professional athletes [16], one amateur [22] and one of an unknown
status [34]. Additionally, two independent test datasets, with 24
and 26 workouts respectively, were acquired by the amateur athlete,
at two different time points. The regression task is to predict the
average cycling power using 13 attributes.

Parkinson’s dataset. The fourth dataset also comprises grouped
data from 42 participants in a six-month trial of a telemonitoring
device [38]. All participants were diagnosed with an early-stage
Parkinson’s disease, and the dataset contains multiple biomedical
voice measurements, which were captured in patients’ homes. We
use linearly-interpolated clinician’s Unified Parkinson’s Disease
Rating Scale (UPDRS) as the outcome attribute in the regression
task. There are 16 attributes and 5,867 instances in this dataset.

Single cell RNA sequencing datasets. We included two types of
single-cell RNA-sequencing (scRNA-seq) datasets to evaluate the
utility of our approach by applying to very large and high-dimen-
sional grouped data.

First, eight datasets were simulated using the Splatter package
(version 1.18.1) [41]. To simulate benchmarks SIM1 to SIM4, we
set the total number of cells to 50,000 and the number of genes
to 720. We varied the number of samples from 5 to 25, keeping
the number of cell types in each batch at 2. These datasets are
representative of the scRNA-seq experiments, where samples are
collected at different time-points, in different laboratories or using
different sequencing platforms, for example. Datasets SIM5 to SIM7
comprise 5 samples each. The number of cell types varies from 4 to
16, and the total numbers of cells range from 16,000 to 64,000. To
create SIM8 dataset, we used the experimental dataset EXP1 as the
template and generated 19 different samples. The total number of
cells in SIM8 is 50,220 and the number of cell types is 5.

To create the experimental dataset EXP1, we queried Gene Ex-
pression Omnibus (GEO) at the National Library of Medicine, for
the recently reported studies of the COVID-19 disease, comprising
multiple samples. EXP1 was constructed from samples of an im-
munophenotyping study of human donors, available as GSE149689
series [27]. Individual samples of each study were downloaded, pre-
processed and integrated. Samples were labeled using the metadata
that was provided by the depositors. We assigned to each sample, a
distinct class label: healthy, influenza, asymptomatic, mild or severe
COVID-19.

3.4 Data Preprocessing Workflows
KEEL benchmarks, Drug, Cycling and Parkinson’s datasets are
normalized and scaled to the range [-1, 1].

To preprocess the scRNA-seq data, we use the standard work-
flow and implement it with the help of the scanpy package (version
1.8.2) [39]. For each dataset, we aggregate samples into one matrix,
using the intersection of the gene names. That means that we only
retain the expression counts of gene transcripts that are common to
all samples. Next, transcripts detected in fewer than 3 cells are fil-
tered out, and expression counts are normalized. Transcript counts
are normalized by dividing the raw measurements of each cell by

the total gene expression and multiplying the result by a scale factor
of 10,000. Next, normalized gene expressions are transformed using
a logarithmic function. We reduce the dimensions of the matrix
to highly variable genes only, and scale their log-normalized ex-
pressions, such that the mean expression across cells is 0 and the
variance is 1.

Finally, the dimension of the aggregated normalized count ma-
trices are further reduced to 10 harmonized principal components.
These components are found by performing the principal com-
ponent analysis, followed by the data harmonization using the
Harmony package [26].

3.5 Regression and Classification Methods
To compute the fitness, a regression or a classification model must
be fitted to the subset of the data encoded in a chromosome. We
use multiple linear regression (MLR) in regression tasks, and lo-
gistic regression (LR) or feed forward neural network (FFNN) in
classification tasks.

Multiple linear regression. We decided to use MLR because it is
fast to train and test. In regression, the objective is to find a regres-
sion function, f (x) = y, which maps the attributes x = x1, . . . , xM
to the numerical output y, where M is the number of attributes.
Assuming a linear relationship between y and x , the regression
function can be expressed as f (x) = b0 +

∑M
j=1 x jbj , where b0 is

a bias term. Therefore, we want to find the coefficients b, given a
large number of attributes x and output values y, that minimize the
prediction error over the given data set of size N .

b̂ = arдmin
b

N∑
i=1

(yi − f (xi ))
2 = arдmin

b

N∑
i=1

©­«yi −
M∑
j=1

xi jbj
ª®¬

2

(3)

Logistic regression. In classification experiments, we use logistic
regression because it has been successful in prior works on Shapley
data valuation [17], and because it is fast to train and test. The
logistic regression uses a logistic function to output a nominal
rather than a numeric value.

Feed forward neural network. For the classification of cell types
in scRNA-seq datasets, we implement a simple, yet effective FFNN.
We chose the FFNN classifier because it outperformed alternative
classification techniques in prior works [29]. Our FFNN architecture
comprises one hidden layer with 8 hidden nodes. The input layer
has 10 nodes, which accept 10 harmonized principal components
of cells. The output layer consists of K nodes, one for each of the
K classes in a dataset. All nodes of the input layer connect to all
hidden nodes, and all hidden nodes connect to all output nodes,
forming a dense network. The information in the FFNN flows in
the forward direction only.

In the hidden layer, we use the ReLU activation functions and
L2 regularization penalty with a factor of 0.01. In the output layer,
we the softmax activation function, and each output node emits
predicted probabilities for each of the K classes. Predictions are
made using the argmax function. The network is trained using
batches of 128 cells and optimized using RMSprop optimizer with a
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learning rate of 1E-4. Finally, categorical cross-entropy loss function
is used to tune the parameters.

3.6 Implementation
All code is written in the Python programming language. We use
Keras Application Programming Interface [11], sklearn [7] and
Tensorflow [1] libraries. All experiments are performed on a High
Performance Computing cluster.

4 RESULTS
Result 1: Evolutionary subset selection performs well on standard

ML regression and classification benchmarks. We first show that
a single GA run can detect a valuable subset S from the original
dataset of size N . To that end, we tested the proposed approach
on classical regression and classification benchmarks from KEEL
database. Each benchmark was pre-partitioned into five folds. We
applied the evolutionary data valuation to one fold, selected the
best subset from that fold, and tested it on the remaining four folds.
The reasoning behind this is as follows. While it is common in
ML to use four folds to tune a model, in real-world applications,
training set is significantly smaller than the test set. We repeated
the process for each of the five folds, and averaged the results.

In regression task, models trained with the subsets performed as
well as the models trained with the original data. The Root Mean
Square Error (RMSE) decreased or remained unchanged in 21 out of
23 benchmarks (Table 1). The Pearson’s correlation between RMSEs
was 0.99. In two regression benchmarks, baseball and california,
the performance of the subsets’ models degraded. The RMSE scores
increased from 820.05 to 828.81 in the baseball benchmark when
the fold size was reduced by about 5%, on average. In addition,
the RMSE score changed from 69747.52 to 69855.35 in california
benchmark, when about 42% of the data were discarded. Overall,
the average size of regression benchmarks was reduced by between
2.32% (dee) to 44.28% (mv), with an average reduction of 20.38%
across all benchmarks. There was a clear dependency between the
average fold size and the number of discarded instances, and larger
folds were reduced by a larger percentage.

The accuracy of classification, measured by Kappa, changed sig-
nificantly when models were trained with subsets (paired t-test
p-value=9.56154E-08). Interestingly, there was no linear depen-
dency between the sizes of the original dataset and their subsets.
The scores were moderately and positively correlated (Pearson’s
correlation of 0.55). On average, sizes of classification benchmarks
were reduced by 51%, while Kappa scores increased from 0.58 to
0.92 (Table 2). Despite the noticeable increase in performance, sub-
sets’ models of banana and winequality-white remained unreliable.
Their Kappa scores were below 0.6. Banana benchmark is one of the
larger ones with 2 classes, whereas winequality-white benchmark
has 11 classes.

Result 2: Performance can be successfully replicated in independent
tests with high-throughput screening data. Having shown that the
proposed method can reduce the size of the training data while
maintaining and even improving models’ performance, we asked
if subset-based models were generalizable to unseen datasets. We
applied our evolutionary approach to three paired data sets of drug
screening experiments. Specifically, for each pair, we selected most

Table 1: Performance in Regression Tasks. Shown are KEEL
benchmark names, average number of training instances
and average RMSE scores of models trained with the orig-
inal dataset or with the subset of data. Reduction in the size
is reported as percent change.

Original Subset

Benchmark Size RMSE Size RMSE Change (%)

ANACALT 810.40 0.42 547.89 0.42 32.39
abalone 835.40 2.23 560.49 2.24 32.91
autoMPG6 78.40 3.59 76.22 3.59 2.78
autoMPG8 78.40 3.50 76.48 3.51 2.45
baseball 67.40 820.05 63.84 828.81 5.28
california 4128.00 69747.52 2391.14 69855.35 42.08
concrete 206.00 10.70 171.36 10.78 16.82
dee 73.00 0.43 71.31 0.43 2.32
delta_ail 1425.80 0.00 907.22 0.00 36.37
delta_elv 1903.40 0.00 1175.69 0.00 38.23
diabetes 8.60 0.76 7.13 0.79 17.09
ele 99.00 661.78 93.26 662.54 5.80
ele-2 211.20 166.45 177.42 167.06 15.99
friedman 240.00 2.73 195.98 2.74 18.34
laser 198.60 23.99 166.32 24.16 16.25
machineCPU 41.80 82.31 40.52 82.72 3.06
mortgage 209.80 0.13 175.92 0.14 16.15
mv 8153.60 4.49 4543.03 4.50 44.28
plastic 330.00 1.54 255.00 1.54 22.73
puma32h 1638.40 0.03 1010.83 0.03 38.30
treasury 209.80 0.26 175.60 0.26 16.30
wankara 321.80 1.60 250.83 1.61 22.05
wizmir 292.20 1.29 231.31 1.30 20.84

valuable subsets of drugs in one of the datasets, such as OCT1-
1, OATP1B1-1, and OATP1B3-1. Next, MLR models were trained
using the original data or using the subsets, and models were tested
on the independent datasets, OCT1-2, OATP1B1-2, OATP1B3-2,
respectively.

Our results show that the original data may be reduced by 47%
for OCT1-1, 32% for OAT1B1-1 and 25% for OATP1B3-1, without
significant changes in the RMSEs of the independent tests (Ta-
ble 3). In the case of OCT1-1, RMSE improved from 28.18 to 26.88
when low-valued drugs were removed from the training data. The
RMSE of OATP1B1-1 dropped from 58.45 to 57.27, and the RMSE
of OATP1B3-1 decreased from 39.07 to 37.71. Our results agree
qualitatively with those of the previously reported data valuation
on the same datasets. In prior work, approximately 30% of data
were removed from OATP1B1-1 and OCT1-1, and 10% of the orig-
inal data were removed from OATP1B3-1, without a decrease in
performance [23].

Next, we repeated GA runs 100 times and examined an ensem-
ble of evolutionary subsets detected in the Drug datasets. Each of
the 100 subsets was tested on independent tests. We analyzed the
distributions of subsets’ sizes and their RMSE scores. On average,
OCT1-1 could be reduced from 1,718 to 956.47, while keeping the
average RMSE around 28.11, lower than the original score (Fig-
ure 1A and D). The average RMSE of OATP1B1-1 subsets was 58.72,
on par with the model trained using all of the data, and the average
size of the subsets was around 159.86 (Figure 1B and E). Finally, a
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Table 2: Performance in Classification Tasks. Shown are
KEEL benchmark names, average number of training in-
stances and average Kappa scores ofmodels trainedwith the
original dataset or with the subset of data. Reduction in the
size is reported as percent change.

Original Subset

Benchmark Classes Size κ Size κ Change (%)

appendicitis 2 21.20 0.48 10.40 1.00 50.94
balance 3 125.00 0.77 58.80 1.00 52.96
banana 2 1060.00 0.16 505.40 0.40 52.32
cleveland 5 59.40 0.24 29.20 1.00 50.84
ecoli 8 67.20 0.39 30.00 1.00 55.36
glass 7 42.80 0.39 16.00 1.00 62.62
iris 3 30.00 0.89 14.60 1.00 51.33
led7digit 10 100.00 0.68 42.00 1.00 58.00
magic 2 3804.00 0.52 1844.20 0.71 51.52
movement_libras 15 72.00 0.58 38.40 1.00 46.67
phoneme 2 1080.80 0.35 506.00 0.80 53.18
pima 2 153.40 0.44 93.80 1.00 38.85
ring 2 1480.00 0.51 714.40 0.77 51.73
segment 7 461.80 0.90 272.00 1.00 41.10
sonar 2 41.60 0.44 23.20 1.00 44.23
spambase 2 919.40 0.82 492.00 1.00 46.49
texture 11 1100.00 0.99 551.80 1.00 49.84
titanic 2 440.20 0.44 207.40 0.99 52.89
twonorm 2 1480.00 0.95 751.80 1.00 49.20
wdbc 2 113.80 0.93 55.40 1.00 51.32
wine 3 35.60 0.95 16.40 1.00 53.93
winequality-red 11 319.80 0.31 154.40 0.85 51.72
winequality-white 11 979.60 0.24 468.00 0.55 52.23
yeast 10 296.80 0.44 134.20 0.92 54.78

Table 3: Performance in Virtual Drug Screening. For each
paired dataset, shown are its name, original and reduced
size, and the RMSEs of the models trained using the origi-
nal dataset or models trained with subsets of data.

Original Subset

Name Size RMSE Size RMSE

OCT1-1 1718 28.18 914 26.88
OATP1B1-1 224 58.45 152 57.27
OATP1B3-1 224 39.07 169 37.71

wider spread was observed in OATP1B3-1 solutions (Figure 1C and
F). Although the average RMSE score was 40.95, about half of the
subsets had RMSE scores lower than the original RMSE score, and
the average subset size of OATP1B3-1 was 159.43.

Result 3: Evolutionary subsets perform well irrespective of the train-
ing algorithm. One of the limitations of prior works is that highly
valuable data selected by one algorithm may not be useful for re-
training by a different algorithm [4, 17]. Therefore, we examined
the performance of evolutionary-based subsets in training with a
different algorithm. Random forest (RF) regression models were
fitted using each of the 100 subsets of OCT1-1, OATP1B1-1 and
OATP1B3, respectively, and predictions were made for the corre-
sponding independent tests.

Our results show that for all of the three paired datasets, subset-
based training is similar or better than training with the original
data, irrespective of the algorithm. Interestingly, RF models had
better performance than the corresponding MLR models (Figure 1,
G-I). Specifically, the average RMSEs on the independent tests were
24.10 for OCT1-2, 55.66 for OATP1B1-2, and 36.30 for OATP1B3-2,
respectively. We also note that the RF models trained using the
original data outperformed MLR models trained using the original
data. The practical application of these results is that evolutionary
subsets can be first selected using a fast algorithm, such as MLR,
and then used to train a final model with a computationally slower
technique.

Result 4: External validation and subset-size penalty improve gen-
eralizability of the evolutionary subsets. As an alternative to multi-
objective optimization algorithm [4], we designed and tested two
modifications to our fitness function and its evaluation. We tested
thesemodifications on the Cycling dataset, which comprises grouped
training data and two independent test datasets.

First, we studied the importance of the external validation in the
evaluation of fitness. Themotivation behind this is that subsetsmust
be representative of the original data and be generalizable to unseen
data. Our original fitness function, F1, computes performance in
self-validation (Section 3). In self-validation, training and validation
subsets are identical. We designed an alternative fitness function,
F2 which computes the goodness-of-fit, such as Kappa or R2, using
an external validation set.

Second, to determine whether models trained with subsets are
prone to overfitting, we designed a third fitness function, F3, com-
prising the original goodness-of-fit score and a penalty term. The
second term of F3 penalizes smaller subsets and rewards larger ones,
to avoid memorization and improve the generality of the trained
model. We compute the second term as ( |N |− |S |)

|N |
, where |S | is the

size of the subset and |N | is the size of the original training dataset.
Therefore, the penalty is 0 when all training instances are selected,
and 1 when none of the training instances had been selected.

Finally, we combined both external validation and the penalty
term in the fourth fitness function, F4.

There are different methodologies for the construction of an
external validation set. Here, we split the original data into train
and validation folds as follows. We create a balanced training fold
by selecting 100 instances from each athlete, randomly. All remain-
ing instances are set aside as the external validation set, which is
imbalanced in the number of the per-athlete instances.

We tested the subsets obtained by each fitness function in two
independent tests. As expected, there was a significant difference in
the subsets’ sizes, when the penalty term was added to the fitness
function. Specifically, the average subset size ranged from 269.06
for F1 to 418.67 for F4 (Figure 2A). There was also a slight increase
when fitness was evaluated in external validation. The average
subset size increased by about 20 instances between F1 and F2, and
by 45 instances between F3 and F4, respectively.

The RMSE scores of the independent tests were 33.26 and 47.79,
when training was done with the entire dataset of 1,936 instances.
On average, similar RMSE scores were observed by training MLR
with much smaller subsets of the data. Specifically, average RMSE
scores on independent test 1 were 40.55 for F1, 34.39 for F2, 37.70
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Figure 1: Distribution of Subsets’ Sizes and RMSEs in Drug Tests. Shown are barplots for three paired datasets, OCT1 (left
column, red), OATP1B1 (middle column, green), and OATP1B3 (right column, yellow). A. to C. Top row shows size distributions
of 100 GA runs. D. to F. Middle row shows RMSE scores of MLR models in independent tests. G. to I. Bottom row shows RMSE
scores of RF models in independent tests.
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Figure 2: Distributions of Subsets’ Sizes and RMSEs in Cycling Tests. Shown are violin plots for four fitness functions. Top row
shows 100 subsets computed by repeated data balancing and bottom row shows 100 subsets selected from the same balanced
dataset. A. and D. Distribution of sizes. B. and E. Distribution of Test 1 RMSE scores of MLR models. Distribution of Test 2
RMSE scores of MLR models.
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for F3 and 32.32 for F4, respectively (Figure 2B). Independent test 2
was more challenging to predict, and the average RMSE scores were
53.78, 47.80, 50.46, and 46.66, for F1, F2, F3 and F4, respectively
(Figure 2C).

Overall, we found that the external validation of fitness had a
greater influence on performance than the penalty term. There was
less variability in RMSE scores of F2 and F4, compared to F1 and F3.
Also, we observed that the best performance on the independent
tests 1 and 2 was achieved by training with as few as 287 (F2) and
294 (F4) instances out of the original 600.

To examine, howmuch variability is due to data balancing, we re-
peated the experiments while keeping the balanced dataset constant.
Overall, we observed similar trends, where models generalized to
test data better when fitness functions comprised two terms and
were evaluated on external validation sets (Figure 2D-F). Notably,
the distributions of subsets’ sizes did not change, indicating that
the balanced data of size 600 can be reduced to fewer than 300 train-
ing instances without a decrease in performance. Additionally, we
confirmed that although the best performance was seen for subsets
created with F4, an external validation of the fitness function had
greater importance for the generalizability of the fitted model than
the penalty term.

Next, we proceeded to quantitatively estimate data values of
all 600 instances of the balanced dataset, as the frequency of their
occurrences in the ensemble of 100 evolutionary subsets (Section 3).
Once data values were computed, we ranked them in the increasing
order and examined the per-athlete composition of the top 100
and the bottom 100 instances. Interestingly, data of the amateur
athlete 5 were overrepresented among the least valuable instances
and underrepresented among the most valuable instances in exper-
iments without external validation (Table 4). On the other hand,
contributions of different athletes’ data to the top 100 instances
were somewhat balanced for F4 function, yet they differed signif-
icantly among the least valuable instances for the same function.
For example, only 6 out of 100 bottom instances belonged to athlete
3 compared with 26 instances of athlete 5. Remarkably, we note
that for F1 and F3 functions, which perform self-validation, data
of athlete 5 comprised almost 50% of the least valuable instances,
indicating that this athlete’s data may be very different from the
data of the other athletes. These differences may be attributed to
the selection bias because this athlete is an amateur, while 4 out
of 5 remaining athletes are professionals and 1 out of 5 is of an
unknown status. Alternatively, the differences may be due to the
data capture biases arising from the types of sensors, which were
used to collect the data.

Result 5: Evolutionary data valuation provides insights about fea-
ture importance. To understand whether the proposed data val-
uation approach can uncover putative biases in data or explain
important instances by their features, we analyzed grouped data of
approximately 5,875 voice recordings from 42 patients with Parkin-
son’s disease. We used F4 fitness function to estimate data values
of a balanced training set of 4,200 instances.

Once data values were computed from an ensemble of 100 GA
subsets, we sorted all instances by their estimated values and com-
pared the attributes of the top and bottom 10, 20, and 100 instances.
For each attribute, including sex and age, a pairwise Student’s t-test

Table 4: Distribution of Per-Athlete Data Among High-
Valued and Low-Valued Instances. For each fitness function,
shown are the number of per-athlete instances among 100
most valuable and 100 least valuable instances.

Function Top 100 Bottom 100

1 2 3 4 5 6 1 2 3 4 5 6

F1 11 26 17 19 6 21 17 14 5 6 54 4
F2 22 17 15 16 14 16 6 12 47 6 20 9
F3 13 24 10 20 9 24 14 13 12 7 51 3
F4 16 21 18 13 13 19 21 13 6 21 26 13

was applied to the distributions of high-valued and low-valued data
and p-values less than 0.05 were deemed significant. The three at-
tributes that had significant differences between the top and bottom
10 and top and bottom 20 instances, were harmonics-to-noise ratio,
recurrence period density entropy, and detrended fluctuation anal-
ysis (Figure 3A-F). On the other hand, when the top and bottom 100
instances were compared, the only statistically different attributes
were sex and age. The original dataset was relatively well balanced
by age and was imbalanced in the sex attribute, with a ratio of
2.15 to 1 of male to female recordings. There is a higher preva-
lence of Parkinson’s disease in males, which explains the imbalance.
Interestingly, we found that the ratio of male to female patients
among the top 100 instances was 1.17, and among the bottom 100
instances, it was 2.67, respectively (Figure 3H-I). In addition, the top
100 instances comprised data of younger patients, with the mean
age of 59.60, compared with the mean age of 68.10 in the bottom
100 instances (Figure 3G).

This result demonstrates the utility of our proposed approach.
By automatically detecting the best subset in an ensemble of GA
solutions, one can train a model more rapidly and sometimes, more
accurately. On the other hand, by rank-based analysis of data values,
one can explain which attribute values have high or low impact on
the predictive performance.

Result 6: Evolutionary approach detects most valuable samples
in grouped data. In the last experiment, we applied our approach
in a slightly different setting. We aimed to identify most valuable
samples of scRNA-seq studies. In these experiments, gene expres-
sion is measured in individual cells, comprising a biological sample.
Because the individual cells are of different types and states, we
wanted to include all cells of a specific sample into a common in-
tegrated dataset, and exclude samples that are redundant or are
outside of the application domain, for example.

In this formulation, therefore, each chromosome encodes a sub-
set of samples rather than a subset of individual cells. We tested
this approach in the classification mode, using F2 fitness function
and the FFNN. We report Kappa scores of self-validation on the
original samples and on the subset of samples. On average, the size
of the scRNA-seq datasets was reduced by approximately 40%, and
datasets with the larger number of samples had bigger reduction
in size (Table 5). There was no statistically significant difference
between the Kappa scores of FFNNs that were trained with the
subsets compared with the FFNNs that were trained with the orig-
inal data. The only dataset, for which Kappa decreased when the
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Figure 3: Differences Between Attributes. Shown are differences in attributes of high-valued (orange) and low-valued (blue)
training instances. A. Boxplot of HNR attribute in top 10 and bottom 10 instances. B. Boxplot of RPDE attribute in top 10 and
bottom 10 instances. C. Boxplot of DFA attribute in top 10 and bottom 10 instances. D. to F. Boxplots of HNR, PDE and DFA
attributes in top 20 and bottom 20 instances. G. Boxplot of age distribution in top 100 and bottom 100 instances. H. Barplot of
sex attribute in top 100 (red: male, green: female). I. Barplot of sex attribute in bottom 100 instances (red: male, green: female).

Table 5: Performance in scRNA-seq Classification. For each
dataset, shown are its name, total number of cells, and
cell-type types. Number of samples and Kappa core in self-
validation, are shown for the original dataset and for subset
of samples. Percent reduction in the number of samples is
shown in the last column.

Original Subset
Dataset Cells Classes Samples Kappa Samples Kappa Change (%)

SIM1 50000 2 5 1.00 2.98 0.99 40.40
SIM2 50000 2 10 1.00 5.58 0.99 44.20
SIM3 50000 2 20 0.99 10.3 0.99 48.50
SIM4 50000 2 25 0.99 12.31 0.99 50.76
SIM5 16000 4 5 1.00 4.02 0.99 19.60
SIM6 32000 8 5 0.97 3.83 0.92 23.40
SIM7 64000 16 5 0.82 3.69 0.72 26.20
SIM8 50220 5 19 0.34 9.47 0.97 50.16
EXP1 50220 5 19 0.08 8.96 0.60 52.84

network was trained with fewer than 5 samples, was the synthetic
dataset SIM7. The drop in performance to Kappa score of 0.72, may,
however, be explained by the large number of cell-types in the
dataset.

Most interesting results were observed for datasets SIM8 and
EXP1. Recall, that SIM8 dataset was constructed using EXP1 as a
template. Interestingly, starting Kappas for both of these datasets
were very low, 0.34 for SIM8 and 0.08 for EXP1, pointing to the

lack of confidence in the cell-type classification. Remarkably, when
the number of samples in SIM8 was reduced from 19 to about 9.47,
Kappa scores increased to an average of 0.97. Moreover, several
solutions had a perfect Kappa score of 1.0.

We also observed a sharp increase in Kappa of EXP1, from 0.08 to
0.60, on the average. Lower performance in the experimental dataset
compared with the synthetic one, however, indicates that synthetic
data is easier to classify and may not be a good benchmark for
bioinformatics tools. The most representative and discriminating
subset of samples in EXP1 dataset contained 9 out of 19 samples.
It comprised samples of 3 healthy donors, 1 of influenza patient,
1 of asymptomatic COVID-19 patient, 2 samples from mild and 2
from severe COVID-19 patients, respectively. Not surprisingly, the
asymptomatic COVID-19 sample was selected in all 100 subsets,
because this was the only sample of this type. Interestingly, the best
subset encompassed all of the available healthy patients’ samples.
On the other hand, only 1 out of 3 influenza samples was selected
into the best subset of EXP1. In contrast, influenza samples were
overrepresented among the subsets of SIM8. Finally, we found that
influenza sample 13 was the most valuable, in both datasets, SIM8
and EXP1.

5 CONCLUSION
Bioinformatics and health informatics rely on supervised and un-
supervised ML to analyze massive and high-dimensional data. The
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growth in the number and size of new data is accompanied by an
increased complexity of ML models and an increased burden on
computational resources and energy. Rather than focusing on the
learning process, data valuation methods estimate the importance
of data that are used for training. Selection and quantification of the
most valuable training data are active areas of academic research.

In this work, we proposed a practical approach to data valuation,
inspired by natural evolution, and showed that it can be successfully
used in the classification and regression tasks, with benchmarks
as well as with real-world bioinformatics and health informatics
data. Moreover, we demonstrated that evolutionary subsets are
both, representative of the original data and generalizable to the
unseen data. Finally, our approach can be used to estimate data
values from an ensemble of evolutionary subsets, and can, in turn,
help to explain predictions made by the models.

Future work will extend the proposed evolutionary approach to
unsupervised learning, in particular, to cluster analysis.
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